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manifolds via the heat flow
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Abstract. The main topic discussed in this paper is the following question: Given a
Riemannian manifold M and a closed C' curve f : S' - M does there exist a (uni-
que) solution of the heat equation 9.f, = 7(f;) defined for all t > 0 which is conti-
nuous at t = 0 along with its first S*-derivative and which coincides with fat t = 0.

1. INTRODUCTION

In [1] J. Eells and J.H. Sampson treated the more general question where
the domain of f is any compact Riemannian manifold (rather than the special
case studied here where the domain is the unit circle S1). They gave an affirma-
tive answer in the case where M has non-positive Riemannian curvature and
satisfies some further conditions which were given in terms of an embedding of
M in some Euclidean space. These further conditions are always satisfied when
M is compact. Then they proved that if M is non-compact but satisfying a further
condition (again in terms of the embedding) every such solution will be bounded
(i.e. will have its image contained in a compact subset of M), and finally that if M
has non-positive Riemannian curvature and f, is a bounded solution of the heat
equation then there is a sequence ¢, 7,,... of #-values such that the mappings
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ffk converge uniformly along with their first order space derivatives to a harmonic

mapping.

Here the case of closed curves will be approached from a slightly different
angle. First for a given closed C! curve f a condition on M will be given which
will ensure that any solution of the heat equation, which is continuous at t = 0
along with its first S!-derivative and which coincides with f at r = 0 has its image
contained in a fixed compact set. This condition is different from that in {1}
and does not depend on an embedding. Then assuming that that is the case (i.e.
all solutions uniformly bounded) the existence of a unique solution defined for
all + > 0 will be proved. The proof of this will follow closely the proof of the
corresponding result in 1] but the conditions on M (in particular the curvature
restriction) used there will not be necessary. Finally it will be proved that this
solution subconverges to a closed geodesic, again following [1] but without the
curvature restriction.

The assertion that the results of [1] hold for closed curves on compact Rieman-
nian manifolds without curvature restrictions was made in «Variational theory
in fibre bundles» by J. Eells and J.H. Sampson, Proc. US-Japan Sem. Diff. Geo.
Kyoto (1965) 22 -23 and (with a proof different from the one given here) in
«On harmonic mappings» by J.H. Sampson, Istituto Nazionale di Alta Matema-
tica Francesco Severi Symposia Matematica Vol. XXVI (1982).

The material is arranged in sections as follows: The notation used is fixed in
Section 2 which also contains some basic definitions and results in differential
geometry. The definitions of energy, tension field etc. are given in Section 3,
along with some fundamental properties of solutions of the heat equation. The
condition for boundedness of solutions is given in Section 4 and Section 5 has
some results about when, in terms of the geometry of the manifold, such a
condition might be fulfilled. The proof of existence for all > 0 is in Section
6 and the proof of subconvergence of the solution to a closed geodesic is in
Section 7.

This paper has benefitted from valuable advice and guidance from Professor
J. Eells.

2. NOTATION

Throughout M will denote a complete Riemannian manifold. (u,v) is the
inner product of two tangent vectors u, v at the same point on M and

1
|v | = (v, v)? the length of v. d is the distance function on M and Br (x) the open
ball centred at x with radius 7.
The unit circle S1 will always be parametrized by the central angle 6. If fis a
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mapping with domain S x 7 where I is a subset of IR, for a fixed ¢ in If, is the
mapping with domain S! given by L0)=1(6,1). f:S!'5 R will sometimes be
identified with fo (8 - ¢'%) : R - IR. 9, denotes differentiation with respect to
g, aef= Sa ae where f, is the differential of f, similarly for a,.

The symbol V will be used for the Levi-Civita connection on M and for the
induced connection on the vector fields along a smooth mapping f into M. The
following facts about the connection (from [2]) will be needed.

Let X, Y, Z be vector fields on M. The torsion tensor T defined by

2.1 TX,Y)=Vy Y-V, X—[X,Y]
satisfies 7 = 0. The curvature tensor R is defined by
RX,Y)Z=VyV,Z—V,V,2Z ——V[X,Y]Z.

Let N be a smooth manifold, f: N - M smooth, A, B vector ficlds on N and
X, Y vector fields along f. Then

(2-2) 0= T(f*A’f*B):VAf*B—va*A —f*[A,B]
(2.3) R(fA, [ B)X =V, VX =V V, X =V, pX
(2.4) AX, Y=V, X, Y)+(X,V, Y.

3. THE HEAT EQUATION
DEFINITIONS. For a C! curve f:S! > M its energy density e(f) is the function

1
S!5 IR defined by e(f)0) = > |3,f(6)|>. The energy E(f) of f is defined

by E(f) = fo”e(f)(e) df. The length L(g) of a C! curve g is the integral of the

length of its tangent vector over its domain. When fis C?its tension field 7(f) is
the vector field along f given by 7(f) = Vae d,f. f is a geodesic iff its tension

field vanishes.

LEMMA 3A. Let f, :SY > M be a smooth family of closed curves for t in some
open interval. Put E(t) = E(f,). Then

2n
0,E(t) = —f (T(£,)(0), 3,£,(8)) d6.

0

Proof. By definition
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2n
1
E(t)=f = (3,4,(0),3,7,6) 40
0

so by (2.4) and (2.2)

2w
3E®) =f V3, 3,/,(0), 8, 1,(6)) d6 =
0

2n
- f (Va, ,(6), 3, £,(6)) d6.
0

Further

2n
0 =f 3,(3.£,(6), 3, £,(8)) d6 =
0

27
=f V5, 3,7, (6), 3,£,6)) +
0

+43,5,(0), V3,101 d6,

and from this

27
f (Va, 3,5,6), 3,£,(6)) d6 =
0

2n
- —f V3, 3,5,(6), 3,£,(0)) d.
0

COROLLARY. If f, is a smooth solution of the heat equation

(3.1) 3,f, =1(f)

then

2n
(3.2) 3E(r) = —f |8,f,|2d6.
0
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Therefore atE(t) < O with 8,E(t) = O only when f, is a geodesic.

The following propositions are special cases of Propositions 2(B) and 6(B) of

(1]
PROPOSITION. Every C2 curve f: 81— M which satisfies 7(f) = 0 is smooth.

PROPOSITION. If (8,t) —f,(0) is a map of S x (t,,t,) >M which is C! on the
product manifold and C? on S! for each t, and if that map satisfies (3.1), then
it is smooth.

4. BOUNDEDNESS CONDITIONS

Solutions of the heat equation that are not bounded exist as is shown by the
following examplz from [1].

Let N be the manifold obtained by revolving the graph of v(u)=1+¢e"
around the u-axis. If f satisfies aou =0, ¢ =0 (¢ revolution angle) then so does
the solution f, for any subsequent time. The heat equation reduces to
o,u= :—:&—11- . Thus e*+ u —2log(e”+ 1) =t + const, in particular u — oo
as t - oo. However, if the length of fis less than 27 one would expect the solution
to be bounded.

Fix a C! curve f:S! - M. Throughout this section f, : ST M is a solution of
the heat equation for 0 < ¢ <b < oo which is continuous along with 9, f, atr =0
and which coincides with fat r = 0. As before E(¢t) = E(ft).

u

DEFINITION. Let ¢ >0 and U be an open set in M. U has the property P(c) if
for every C2curveg : S'» U

27
4.1 cE(g)<f |7(g)|2d0.
0

1 1

1 1 -1 1
Put m(f,c)=(2m) 2E(f)+@r% +2(2m) *)E(f)? + 4(2m)

_1
2

1
cLE(f)2.

THEOREM 4A. Let M satisfy the following condition: There is a compact K C M
such that for every x in the complement of K there exist real numbers k, ¢ with
c>0and k >m(f,c) such that Bk(x) has the property P(c). Then the image of
[, is bounded, and further if b = o and if the image of some f,0 liesin M\ K then

there exists a p € M such that tl;ll;rlo f,=p.
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Proof. For every closed C! curve g : S1 - M one has the inequalities
1 1 1
(4.2) diam g(S) < — L(g) <> E(g)*.

By the corollary to Lemma 3A E(¢) is a non-increasing function and is therefore
bounded by E(f). Bearing that and (4.2) in mind it is seen that if all the curves
]; with ¢ € (0, b) intersect K then the image of the solution is bounded.

So suppose that the image of ];0 lies in M\K for some 7€ (0,b). Fix

00€S1. By hypothesis there exist ¢ >0 and k > m(f,c) such that Bk(fto(eo))
has the property P(c). It is easily seen that fto(Sl) C Bk(fto(OO)). Put
= sup{t' > ¢, :ft(Sl) C Bk(fto(ﬂo)) for all 7 €z, t')} and suppose for a
contradiction that 1, < b. It is easy to show that

1 1 1
(4.3) sup d(f, (0).f, @) <7? [E(e)* +E(t,)7 )+

1 an AN
+—f / | 3,5,(6)| dt de.
2n
0 ‘1,

Estimate of the last term in (4.3): By (3.2)

4

2n
1
— 19,7, (6)|dr df <
PA o /4

0
1

27
(f ;a,ft(e)|2d0) dr =

0

. 4
4.4) < (21r)_5f

to
1 1
=(2n) 2 (—9,E()*dt.
fo
1
Put 7,={t=>1t,:—3,E(t)=1}, T2={t>t0:E(t)2<—a,E(t)<1}, T, =
1
={t>t,:— atE(t)<E(t)2}. From (4.4)
1 2 31
(4.5) —f f |9,£,(0)|drdb <
2n 0

2
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1 1
< (2m) 2f (—93,E@)*dt +
ito:t,)1NT,

_xf 1
(4.5) +(27n) 2 (— atE(t))2 dt +
ltpt1NT,
_1 1
+@2n) ? (—9,E(1)? dt.
lg: 141N Ty
_1 1
I Q2n) ? (— atE(t))2 dr <
(1. 11N T,
_1
(4.6) <(Q2m) 2 (—0,E(r))dr<
1.0 10 Ty

1

< (2m) 2(E(ty) — E(t)).
1
IT Suppose [t',t"]C T,ie. Et)? <— 0,EM)<lforallt e {t',t"). Then

3,E(t)

1
=—2at(E2) SO

I<—

1
E@)?
2 1 1 1
t"—t' <—2f 3, (E*)dt =2(E(t")? —E(")?).
;

Therefore, the sum of the lelllgths of the intervals making up [to, 5L1n T, is no
1 1
greater than 2(E(t0)2 —E(t))*) andso

1 1 -1 1 1
4.7 (2m) 2 (—3,E(1)? dt <2Qm) 2(E(t,? —E(t)?).

{tg.1N T,

III Since Bk(fto(eo)) has the property P(c) one has

2n 2n
cE(t)<f | 7(£,)0)]2d0 =f |3,£,(8)|2d6 = —d,E(r)
0 0
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and therefore

2,E(1)
E(r)

< -c, forall t el 1))

From this it follows that for ¢t € [to, )

(4.8) E()<E(ty)e 19,

Therefore

1
2

-1 1 1
(2m) ZI (=9, E(t)*dr<(2m) j E@)*dr <
{to.t11N T3 lto,t110 T3

15t

_1 1 —c(t_to)
4.9) <Q2m) ? E(to)4 exp[—*———]dt =
to 4
~1 1 —c(t, —1y)
=42m) 2 1E@y)? (1 —exp[-—;—o-])-

Combining (4.3), (4.5), (4.6), (4.7), (4.9)

1 1 1 _1
sup d(£, (0), £ (N <T2[E(t)? + E(t))* 1+ (2m) *[E(tg) —
st

_1 1 1
4.10) —E(D1+20m) 2 [EC)? —E¢)?]+
_1 1 '_C(tlﬁto)
+4Q2m) 2c‘lE(tO)“(l —exp [——~4 ])

And further

-1
sup d(f, (0),£, (0))<(2m) *E(1y) +

ecs

L _L 1
+ (27?7 +2Q27m) 2)E@,)? +4Q2m)

1 1
2,1 4
cT1E(1y)*.

From this it follows that ft $Shc Bk(j;o(ﬂo)), but that would mean that there
1

is an € > 0 such that ftl”(Sl) C Bk(j;o(ﬂo)) for all 7€ [0, €) contradicting the

choice of ¢
For the proof of the last assertion of the theorem observe that by the above
proofft(Sl) CBk(ft (60)) for all r € [to,oo) and therefore the inequality (4.8)
(4]
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will hold for all ¢ € [¢, e0). Further, for all tht"e [ty o0) the inequality (4.10)
will hold for ¢, ¢” in place of ty, ;. For a fixed 6 (4 8) and (4.10) show that
f: (8) converges to a point p as t - oo. Further, (4.8) shows that £(¢) and therefore
(by (4.2)) L(f,) converge to zero, whichshows that ,ILHL f(6)is independent of 9.

Remark. In the case of M =IR" it is easy to show that the inequality
E(NH< f02"| 7(f)|*d6 holds for every closed C? curve f : ST > IR™:

First consider real valued f. For any f € LY(SY) the Fourier coefficients of f
are defined by the formula

. 1 (" )
f(n)= ;—jf(e)e_'”odB nez

T

-

and one has the Parseval theorem

1 n

}: () = j £(0)2(8) do
n= 21r

-

whenever f, g € L2(S!); the series on the left converges absolutely. When f is
C? one has

PN AN .
3,f(n) =inf(n), 3f(m)=—n?fn) nez

n=—oo n=—o

1 (7 = AN o -
—NJ | 3,£(6)|2d6 = Z |9, fm)|? = Z n?| f(n)|?

1 (7 - )
—f |827(0)]2d6 = Z n*| fo 2.
¥id

n=—o
-

Therefore ||3,f|2<|32f|> and the same inequality holds for R"-valued f
because it holds for each component.

5. MORE ON BOUNDEDNESS CONDITIONS

In this section a demonstration of the inequality



58 S.K. OTTARSSON

i 2n
- E(f)<f0 |7(f)|>de

for closed curves satisfying certain assumptions is given following a proof
of the Synge-formula given on pp. 122 -3 in [2].

DEFINITION. If A is a subset of M define
K4 =sup{({R(X, Y)Y, X): X, YET;,M,|X|=| Y|=1,p €A}
Then forallp €4, X, YeTpM, (R(X, Y)Y,X)<KA|X|2| Y|2.

THEOREM 5A. Let f:S'>M be a non-constant closed C* curve and assume
w.lo.g. that the maximum of the energy density occurs at 8 = 0. Suppose that
the image of [ is contained in a ball B_(f(0)) satisfying the following: The expo-
nential map eXP (g Tf(O)M —M restricted to B, (0) in T}(O)M i’s a diffeomor-

phism onto B (f(0)) and if Kpg>0 the radius r satisfies r < (2Kg)'l. Then the

1 "
inequality — E(f)</[? |'r(f)|2d6 holds.
2,”2 (1]

Remark. The inequality is of course trivial when fis constant.

During the proof consider 6 in the interval (0, 6,) where 8, is the first >0
such that f(6) = f(0). Put B = B,( f(0)). To begin with a few definitions.

Define f* : S1 > Tf(O)M by f*= exp;(})) of and a family of geodesics g by
g, = expf(o)(t .f*(0)). For a fixed 6g%(-)=g(#, ) is a geodesic from
f(0) to f(8) (g°(0) = £(0),g°(1) = £(6)). N

Define three vector fields along the map g : X =9,g°, Y=29,g° and ¥ =
=Y (Y, X)X/|X |2

Define L(6) to be the length of g°. L(8) =| 3,8°| =| X |.

Step I

lim, X/|X | (8, t) exists and equals the unit vector in the direction of 9, f|, —o
o0

Proof. Identify Tf(O)M and all its tangent spaces with IR” and so let J () be the
vector u translated to (Tf(o)M ),- One has
X F*0) )

S @0 =Y o
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R X-1C)) . .
(compare Gauf-lemma p. 136 [2]). OIH%W—)—I exists (in Y}(O)M) and equals

X
the unit vector in the direction of 9, f|,_, and so lim, — (6, ¢) exists and is
8/ le=0 00" | X|

equal to the same vector.

Since g(0, 0) =£(0), Y(8, 0) =0 and also Vao Y(6,00=0

(5.1
Since g(6, 1) = f(6), Y (0, 1) = 9, f(0) and also Vae Y(0,1)=7(f)0).

The vector field ¥ along g (the component of Y orthogonal to X) is C! for
8 €(0,60,) and Y (8, 0) =0 by (5.1).

Step II
X
(5.2) 2,L0)= (3,70), = @ D).

Proof. By (2.2)

(5.3) Vo, X =V, Y.

Using this and L(6) = /'| X | d there follows

Y3, X, Xx) 'V, X, X)
3,LOO)=| —— dt=] ——— dr=
0

2| x| [X]
1 1
Y, X) X
TIx] AT
X X
- Yy ——— (B’t) — = a f(o)’ - (0’ 1)

< |Xl > |t 0,1 < [ lX| by(S.l).
COROLLARY.
(5.4) Jlim 3,L(0) =|3,f(O)].

This follows immediately from (5.2) and Step I.
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Step 11l

1
1 L o
agL(6)=/ ] (TF VDR TIT. 50 ar +
(5.5) ‘
X
+ {r(16), — 0, 1) .
(rn o, = @)

Proof. By (5.3)

1
ae(—)=a9<x,x>
| X

1 _3
= (XX NV X X) =

(5.6) i

= - 'i“/\/—|3 <VBIY,X)

1
From above BBL(@):fO"X_I (VatY,X)dt, therefore using (5.6) and (5.3)

one obtains

1
1 1
9iL(H)= (— 3,(Vy Y, X) +(a —)(V Y,X))dt=
()jo FIR RIFTI A

! 1
j— —_— —_——— 2 =
(5.7) _j( (V, Vo Y. X) +(V, Y.V, X)) |XP<\7(-,'Y,X> )dt

1
1 1
_ _ o 2
-—f ( |X| ((VBOVatY,X) + (VatY, VatY)) lX |3 (Va’Y,X> )df-
0

Since for a fixed 6 g(6,-) is a geodesic Va,X= 0 and 9,|X|= 0. Therefore

1 1
(5.8) Va’(l__ (Y,X)X)= xP (3,(Y,X) X.

X|?
Also, since <)7, X>=0
(5.9) (V, ¥, X0 =037, X)=0
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Now

!

Y=Y+ — (Y, XDX
| X
and
- 1
VathvarY+Vat (-I—A—;F (Y,X)X):

- 1
= VaIY+ W (0Y, XN X
by (5.8). From this it follows that
~ o~ 1 ~
<V3: Y, Vat Y)= <Va,Y’ Va,Y) + |_X—|2 (0,7, X>)'2(VatY, X+

1
+ — (Y, XXX, X).
| x|t

The second term in this expression vanishes by (5.9), the last one equals

L‘{F (VY. X 5)2. In other words

1
S ,
VY. 95,1 = o 7.9 T + 125 (0, Y, 00,

Substituting this in (5.7) gives
'
(5.10) 32L(6) =f 7 (Y, V, Y, X) +(V, V.V, 1) dt.

ET

By (23) VyV3Y=V,Vy Y—-R(X,Y)Y. Therefore (Vy Va Y, X) =
2] 1 t [} @ t

= (VatVao Y, X)—(R(X,Y)Y,X)= a,(vaa Y, X)—(R(X, Y)Y, X).

Substituting this in (5.10) gives

X| X

+(RX,Y)Y, X»)}d¢t.

! X 1 -
A2L(6) = (a, <Va9 Y, —> T V7.V, 1) +
0

(5.11)
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From p. 91 [2]{R(X, Y)Z,U)=—(RX, Y)U, Z) and therefore (R(X, Y)Z,Z) =
=0.Onehas also R(X, Y)Z = — R(Y, X)Z and therefore R(X, X)Z = 0.

1 ~
Puth (0,¢) = W (Y, X). ThenY =Y —h X

(R(Y, X)X, ) =(R(Y, X)X, ) —(ROX, X)X, T) =
=(R(Y, X)X, Y)—(R(Y, X)X, h.X)=(R(Y, X)X, Y).

This shows that (R(X, Y)Y, X)=(R(X, Y)Y, X). This changes (5.11) into

1
1 ~ ~ ~ A~
2LO)=| — (Vy ¥,V 1) —(R(X, V)Y, X)) dr +
o [Xl t t
0

! X T
+L at <Vae Y, l—)(l'> dr Zfo rx—[- (<varY’ vatY)_

7700 4 (00 o 0.1)
—(RX, Y)Y, X))dt +  7(fN0), — (8, 1)

(using (5.1)) which is (5.5).
Step IV

1
The integral I = [ p—

o [X] ((Vat?, VatT’)——(R(X, Y)Y, X)) dr is non-negative.

1 ~ ~ ~ . .
Proof. I = m fol ((Va Y»Va,Y> —(R(X, Y)Y, X))dt since |X| is independent
t
of 1.
Obviously if k5 < 0 the integral is non-negative.

Suppose k 3> 0. As remarked above )7(6, 0) = 0. Consequently

| 7120, 1) =<¥, )0, ) —(¥, 1) (8,0) =

(SIS

t 1
<2f|Vat)7||)~’|dt<2(j |Vat?[2dt) (f |)7|2dt).
0 1]

0
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Therefore,
L 1
1 1 2 2
f|7|2dt<2(f 1Vat)~’|2dt) (j |)7|2dt).
0 0 0
Or
1 1
(5.12) j|?|2dt<4f |V, ¥ |2dr.
t
0 0

1

L 1
Since the radius r of B satisfies » < (2 KB2 )1 one has | X< (2K32 )~ 1. Therefore

~ o ~o
(R(X,Y)Y,X)<K.B[X|2|Y|2<-Z|Y|2.

Consequently

1 1 1
~ A~ ]' ~ o~
j (R(X, Y)Y,X)dtézj |Y|2dt<f [Vatledt
0 0 0

using (5.12). This gives

1
f(|Vat)7|2~—<R(X, Y)Y, x»ndr>o0.
0

By the corollary of Step 11 olin(}‘ 9, L(0)= | aef(O)l. From this one obtains

8
3,,L(0)=|aef(0)|+f 32L(6")do’".
0

From Steps III and IV there follows

2]
53L(0)>|86f(0)|—j | 7(£)(0")]| 6",

0

Since fis a closed curve there must come a 01 where BGL(OI) = 0. Then
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oy
|a6f(0)|<f 178" |46’ <
0
1
2w 2

27 1
<f |T(f)(9)|d0<(27f)2(/ |T(f)(9)|2d9)
0 0

and therefore

2n
|8, F(O)|*< 21r(f |r(f)(6)|2d0)
0

By assumption the energy density attains its maximum at 8 = 0 so

27
E(f)<m|3,f(0)|*< 2112[ | 7(£)(0)]?d6.

0

To conclude this section two examples of how one can combine the results
of this and the preceding section.
Definei :M - R by

i(p) =sup{r: eXp, : Y;M = M restricted to B,(0) C 7;,M isa
diffeomorphism onto B, (p)}.

Case 1
There exists a compact K C M such that i, Vo Oandi|M\K > 2r,>0.Then

1
any solution of the heat equation with initial curve f such that m( £ W) <rg

has bounded image.

Proof. For any p such that B3r0(p) lies wholly in M\ K, Bro(p) has the property
1

P(F) For let g be a closed C? curve with image in B’O(p), w.l.o.g. assume that
4

the maximum of e(g) is attained at 8 = Q. BZrO(g(O)) is contained in M \ K and

so satisfies the hypotheses of Theorem 5A. Therefore Theorem 4 A applies and the
result follows.

Similarly :
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Case 2
There exists a compact K CM such that Ky, >0 and 7|y x> 2r;<

1
< (2 Klf{\ K)" 1 Then any solution of the heat equation with initial curve f such

1
that m (f, ~——2) < r, has bounded image.
2w

6. EXISTENCE OF SOLUTIONS OF THE HEAT EQUATION

This section will be devoted to the following existence problem. Given a closed
C! curve on M does there exist a solution f, of the heat equation defined for
t <0, tl),t < oo, such that f, and aeft are continuous at + = 0 and ft coincides
with the given curve at t = 0?

This problem will be treated under the assumption that the manifold M satisfies
a condition (for example one from the previous sections) which will ensure that
any solution of the kind sought will have its image contained in a fixed compact
set. A solution of the heat equation will henceforth mean a solution of this
problem for a fixed but arbitrary f,.

The main ideas of this treatment are those of [1]; therefore only an outline
will be given with what is different here pointed out.

I. In [1] it is shown how to replace the harmonic map equation 7{f) = 0 and
the heat equation atj; = T(ft) (which in terms of local coordinates on M are
local systems of equations) with global systems. This is done as follows: M can
be smoothly and properly embedded in some Euclidean space IR? by a map
w M — IR?. Given such an embedding it is always possible to construct a smooth
Riemannian metric on a tubular neighbourhood N of M so that N is Riemannian
fibred. Let m : N > M be the projection map and n;b its covariant differential.
Then

(a) A map f:S'- M satisfies 7(f)=0 if and only if the composition
W = w o fsatisfies
2 _ b
(6.1) 0,"We=m5 0, Wi, W7,
(b) A deformation 5 SloMm (t0< t < tl) satisfies r(ft) = atf, if and only if

Wt =w Oft satisfies

2 _ b

(6.2) 95 wtc—a,w,c_n;baewgagw,.

Also, given a smooth W, : 81> N satisfying (6.2) for to<t <t if W, maps
0

S'into M then so does every W, forr, <t <t,.
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11. Derivative bounds

LEMMA. Any solution A Sl M of the heat equation has energy density satisfy-
ing

(6.3) e (f)—d,e(f) =|7(£)|2.

Proof.
1
32e(f,) =02 (-2- A, f, aeft>) =

= ae<Va[, 85> 09 1) = <Vaeva,, Oy fp> 0g ) +
+ <Va0 Oy 1y Vag By 1y)-
The heat equation can be written 0.f, =V, 9,1, s0
]
ate(f;) = (vataofs agf}) = (vaa atfa aof;) =
= <V36Vae aef;, aeft> .
Therefore
dle(f,) — de(f) = <Vae Oy Jy» Vae 0, 1 ZIT(ft)lz'
- (61 _02)2

4t
H is a fundamental solution for the operator L,= 602 — 0,,satisfies L, H = LezH =
1

1 _1
Put H(9,,0,,1) = 3 (mt) ? exp[ }for b,0,eR, teR,.

= 0, and the identity

t
u(@l, 1) = ——f drj H(Gl, 62, t—r1) Lozu(f)z, T) d92
t R

0

6.4)
+f H(,, 0,1 — 1) u(d,, t,) e, 1, <1<y
IR
holds for all u, defined on S! which are of class C2in 8 and Clin ¢ for 1St <1,

Suppose f, is a solution of the heat equation defined for 0<t < ¢, Since
H > 0 there follows from (6.3) and (6.4)
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(6.5) e(ft)(91)<f H(O), 0y, 1 — to)e(f, }0,)d6, for 0< 1y <t <1,.
R

Fort > 1, putting t — 1 for ty in (6.5) there follows

e(f,)(61)<f H(6,,8,, De(f, )0,)d6,

R
and therefore

27

e(ft)< constj e(ftvl)(e)de.

0

Any smaller valuc can be put in for + — 1 on the right for example zero since
e(ft) is assumed to be continuous at = 0.
For0 <z< 1 put¢;,=0in(6.5) to obtain

(6.6) e(f)0))< f H(B,, 6,, De(£,)(0,)d0,.

R

Put E(fo) = 65(1515l e(fo)(B) then (6.6) shows that

e(ft)(ﬁ) < const.?(fo).

To summarize:

THEOREM 6A. Let ft be a solution of the heat equation for 0<t <t,. Then

2
e(ft)gconst.f e(ﬁ))(())d(? for1<t<t1
0

e(f,) < const. sup e(f,)0) for 0<r<1
oes!
with the constants not depending on f,.

The difference between this and the derivation of bounds for the first order
space derivatives in [1] is that the curvature terms in the identity (6) §8A in
[1] do not appear in the corresponding identity here (i.e. (6.3)), because the
domain is 1-dimensional. It is therefore not necessary to impose curvature restric-
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tions on the target manifold M.
For a solution f; of the heat equation there is the following theorem, proved
in [1], for the second derivative with respect to 6 of the W, in (6.2).

THEOREM 6B. Given € there is a constant C independent of t such that | 92Wf|<
< Cfort> e The constant C depends on f

This is proved by using the formula
t
W0) = —f d‘rf H@O,0' t—7)F°(6',7)d0' + Wg(0, 1)
0 R
where
W(‘)'(O, 1) =j H(,8', t)y weo',0)deo’
R

and the F°¢ the functions on the right of (6.2) and the properties of the funda-
mental solution H. The only remark that should be made is that here it is assumed
that the manifold satisfies conditions which will ensure that the image of any
solution will be contained in a fixed compact set and therefore the embedding
conditions in [1] are not necessary since the inequalities (12), §8D in [1] are
automatically satisfied on a compact set.

11I. The following two theorems are proved in §10 [1].

THEOREM 6C. If f, and ft' are two solutions of the heat equation with f, = [y then
they coincide for all relevant t > 0.

THEOREM 6D. Let M' be a compact subset of M. Then for any closed C curve
fo: S1 M such that fO(Sl) lies in M' there is a positive constant t, depending
only on M' and the magnitude of the energy density e(f,) such that there exists
a solution f, for that ffor 0<1t<t,.

From these two theorems one deduces the following which corresponds to
theorem 10C in [1].

THEOREM 6E. There is a unique solution f, of the heat equation defined for all
t>=0.
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Proof. Such a solution exists for small £ by Theorem 6D and is unique by
Theorem 6C. Let 7, be the largest number such that a solution of the kind sought
exists for 0 <t < ¢, and suppose that ¢, is finite. By assumption the manifold M
satisfies conditions which ensure that the images ];(Sl) 0« tl) all lie in a
compact subset of M. Theorem 6A shows that the energy density remains bound-
ed and therefore by Theorems 6C and 6D there is a fixed positive number € such
that any f, can be continued as a solution into the interval (¢, t + €). This contra-
dicts the finiteness of 7, .

7. SUBCONVERGENCE OF SOLUTIONS

In this section let f; be a fixed closed C! curve S' > M and assume that M
satisfies conditions which will ensure that any solution of the heat equation f,
which is continuous along with 4, f, at r = 0 and which coincides with the given
f0 at t = 0 will Fave its image contained in a fixed compact set. Then by the
preceding section a unique solution f, exists for all # € [0, ). In this section
a proof of the following:

THEOREM 7A. There is a sequence T SO S with b > oo such that the
curves f = ftk converge uniformly to a closed geodesic f.

1
LEMMA. (See [3]). For k(ft) = 5 (9,1, Btft> one has the following identity
(7.1 8,k (f,) =05k (f) = |V, 0| + <R3, £» 3,1)8, £, 8, ).
Proof.
s 1
95 _2' (0,15 9 ft{l =9, <Va9 OS> 0,0 =

= Vo, Vo, 0. /> 0,7, + (Vg 0,1, Vo 0,10 =
= (Vy, Vs 3,010 0,10 +| Vg, 8,5,
Also,

1
9, [; (0,1, a,f;):l = (Vbtarft’ 3 fp) =

= (Vatho aef, a,f,)-

Combining these it is easily seen that
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1
<V8,Vaa 0o fps 0uS) = 692[5 (0,1, atf;‘>]_

—[Vy, 3,1, |*+ Vo, Va, 3, f, = V3,V 9, 11> 2.1)
which is (7.1).

LEMMA.

0,E(t) >0 as t >oo.  (Asbefore E(t) = E(1)).

Proof. Put K(ft) = foz"k(ft)(ﬁ) df with k(f,) as in preceding lemma. atE(r) =
=— 2K(j;) (Corollary of Lemma 3A) and

27
3rE(r) = —2[ 3,k(£)(6)de.
0

The last term in (7.1) is uniformly bounded for ¢ greater than any given positive
number by Theorems 6A and 6B. By integrating (7.1) over S! it therefore follows
that there exists a constant C such that a}E(:)> C. atE(t) cannot be bounded
away from zero because it isintegrable so if C = 0 then obviously atE(t) - 0. Sup-
pose C < 0. If for some € > O there exist arbitrarily large 7, such that 0,E(1y) =
= —¢€ then

fo To
f a,E(t)dt<f (—e—Clt,— 1) =€*2C

1o+ ¢/C ty+ €/C
but this contradicts the integrability of 9, £(¢).
Remark. This lemma will be used in the proof of Theorem 7A. In [1] the cor-
responding result (Corollary §6(C)) is proved with the assumption that the target

manifold has non-positive sectional curvature. This assumption is not necessary

here.
In the following proof it will be convenient to use the function G defined by

27
G(6,6" =f X(6.2m X0 (0" dr
0

where X(a.b) is the characteristic function of the interval (a,b). The formula
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27w

h(6)=h(0)—aeh(0)(217—0)—f G(6,0732h(6")d6’
0
holds for all C2 functions # : S > IR and
2m
(7.2) ag[ G(8,0Yh(6)d0 = —h(6)
0

holds for all continuous functions # : S - IR.

Proof of Theorem 7A. Let W, =w Oft be the solution of (6.2) which corresponds
to f,. The mappings WI and 9, Wt form bounded equicontinuous families (Theo-

rems 6A and 6B). Therefore there exists a sequence t, t,,... with tk‘—>oo

t
22 '3
such that the mappings W, = Wzk converge uniformly along with 9, W, to a

continuously differentiable mapping W. The W, can be represented by the formula

2n
WE®) = WEO) — 3, WE(O)(2m — 0) —/ G(6,0)32We0")do’
0

or
WE8) = WE(0) — 3, WE(0)(2m —0) —
(7.3)
27
f G(6,0')(FE©') + 3,WE(0)do’
0

where Ff=m, 9, Wi, ka. By the preceding lemma the 9,W;(6) converge in
the mean to zero as k — oo. Therefore, since G is bounded

27
limj G(@,0") 9, ch(H') dé’' =0.
Kk — oo
0
Passing to the limit in (7.3) there results for the mapping W
2w
WE(@)=we0)— 9, We(0)(2mr — 0) —f G@,0)Fc©6)de’
0

where F(6')= lim F{(0') =, (W)3,W*3,W’. Referring to (7.2) it is seen
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that W satisfies (6.1) which means that it corresponds to a closed geodesic.
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