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Closed geodesicson Riemannian
manifolds via the heat flow
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University of Warwick
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Abstract.Themain topic discussedin this paper is thefollowing question:Givena
RiemannianmanifoldM anda closedC’ curvef: S’ -+M doesthere exista (uni-
que)solution of theheat equation~ = r(f~)definedfor all t~ 0 which is conti-
nuousat t = 0 alongwith its first S‘-derivativeandwhichcoincideswithfat r = 0.

1. INTRODUCTION

In [1] J. Eells and J.H. Sampsontreated the more generalquestionwhere

the domain of f is any compactRiemannianmanifold (rather than the special
casestudiedherewhere the domain is the unit circle S’). They gave an affirma-

tive answer in the case where M has non-positive Riemanniancurvatureand
satisfiessome further conditionswhich weregiven in terms of an embeddingof

M in some Euclideanspace.Thesefurther conditionsare alwayssatisfiedwhen
M is compact.Then they provedthat if M is non-compactbut satisfyinga further

condition(again in termsof the embedding)evetysuchsolution will be bounded
(i.e. will haveits imagecontainedin a compactsubsetof M), and finally that if M
has non-positive Riemanniancurvatureandf~is a boundedsolution of the heat
equation then thereis a sequencet

1, t2, . . . of t-valuessuchthat the mappings
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convergeuniformly along with their first orderspacederivativesto aharmonic

mapping.

Here the case of closedcurves will be approachedfrom a slightly different
angle. First for a given closed C’ curvef a conditionon M will be given which

will ensure that any solutionof the heatequation,which is continuousat t = 0
along with its first S1-derivativeand which coincideswith f at t = 0 hasits image
containedin a fixed compactset. This condition is different from that in [1]
and doesnot dependon an embedding.Thenassumingthat that is the case(i.e.

all solutions uniformly bounded)the existenceof a unique solution definedfor
all t ~ 0 will be proved. The proof of this will follow closely the proofof the

correspondingresult in [1] but the conditionson M (in particularthe curvature
restriction) used there will not be necessary.Finally it will be proved that this
solution subconvergesto a closedgeodesic,again following [11 but without the

curvaturerestriction.
The assertionthat the resultsof [1] hold for closedcurveson compactRieman-

nian manifolds without curvaturerestrictions was madein <<Variational theory
in fibre bundles>>by J. Eells and J.H. Sampson,Proc.US-JapanSem.Diff. Geo.
Kyoto (1965) 22 -23 and (with a proof different from the one given here) in

<<On harmonic mappings>> by J.H. Sampson,Istituto Nazionaledi Alta Matema-

ticaFrancescoSevenSymposiaMatematicaVol. XXVI (1982).
The material is arrangedin sectionsas follows: The notationused is fixed in

Section 2 which also contains some basic definitions and resultsin differential

geometry. The definitions of energy, tensionfield etc. are given in Section 3,
along with some fundamentalpropertiesof solutionsof the heatequation.The

condition for boundednessof solutionsis given in Section4 and Section 5 has
some results about when, in terms of the geometryof the manifold, such a
condition might be fulfilled. The proof of existencefor all t ~ 0 is in Section
6 and the proof of subconvergenceof the solution to a closed geodesicis in

Section7.
This paperhas benefittedfrom valuableadvice and guidance from Professor

J. Eells.

2. NOTATION

Throughout M will denotea completeRiemannian manifold. Ku, v) is the
inner product of two tangent vectors u, v at the same point on M and

v = Ku, v)2 the length of u. d is the distancefunction on M andBr (x) the open
ball centredat x with radiusr.

The unit circle S’ will alwaysbe parametrizedby the centralangle 0. Iffis a
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mappingwith domainS’ x I whereI is a subsetof &, for a fixed t in ‘f~is the

mapping with domainS’ given by ~ =f(O, t). f : S’ -÷ IR will sometimesbe
identified with fo (0 —~-e’°): lR -+ JR. denotesdifferentiationwith respectto
0, a0f=f~a~wheref~is the differential off, similarly for

The symbol V will be used for the Levi-Civita connectionon M and for the
inducedconnectionon the vector fields along a smoothmappingf into M. The

following factsabouttheconnection(from [2]) will beneeded.
Let X, Y,Z bevectorfields onM. ThetorsiontensorTdefinedby

(2.1) T(X,Y)V~Y—VyX—[X,Y1

satisfiesT 0. ThecurvaturetensorR is definedby

R(X, Y)Z = VXVYZ — VYVXZ— VLX YIZ.

Let N be a smoothmanifold,f:N-+M smooth,A, B vectorfields on N and

X, Y vectorfields alongf. Then

(2.2) 0= T(f*A,f*B)=VAf*B—VBf*A —f~[A,B]

(2.3) R(f*A,f*B)X=VAVBX—VBVAX—VIAB]X

(2.4) A(X, Y)=(VAX, Y)+(X,VAY).

3. THE HEAT EQUATION

DEFINITIONS. For a C’ curve f: S’ -+M its energy densitye(f) is the function

S’ JR defined by e(f)(0) = a0f(o)~
2. The energy E(f) off is defined

by E(f) = f 2~e(f)(0)do. The length L(g) of a C1 curve g is the integralof the

length of its tangentvector overits domain.Whenf is C2 its tensionfield r(f) is

the vector field along f given by r(f) = Va ~f. f is a geodesiciff its tension

field vanishes.

LEMMA 3A. Let f~: S’ —*M be a smooth family of closed curvesfor t in some

openinterval. PutE(t) = E(f~).Then

(21r

a~E(t)= —) (r(f~)(O),~ (0)) dO.

0

Proof By definition
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,P21r 1
E(t)=J — (a0f~(o),a0f~(o))do

so by (2.4)and(2.2)

2ir

atE(t)=f (VaJ(O),~ft(O)>dO

(V~a~f~(O),a0f~(O))do.
0

Further

ç 2n

o=J a0(a~f~(O),a0f(O))do =

0

ç2ir

) [(Vs 8~f~(0),a0J(O))+

0

+ (a~f1(O),Va a0j(O))] dO,

andfrom this

ç 2n

j (V~a~J(O),a0f~(0)) dO =

0

2~

(Vaao~(O),~f~(O))dO.

COROLLARY. ‘ff~is a smoothsolutionof theheatequation

(3.1) a~f~=r(,)

then

ç 2ir

(3.2) a~E(t)=__) Ia~f~I
2do.

0
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Thereforea~E(t)~ 0 with a~E(t)= 0 only whenf~is a geodesic.

The following propositionsare specialcasesof Propositions2(B) and 6(B) of

[1].

PROPOSITION.Every C
2 curvef: S’ —*M which satisfiesr(f) = 0 issmooth.

PROPOSITION.If (0, t) —~f(O)is a map of S’ x (t
0, t1) -+M which is C’ on the

product manifold and C
2 on ~1 for each t, and if that map satisfies(3.1), then

it is smooth.

4. BOUNDEDNESSCONDITIONS

Solutions of the heatequationthat arenot boundedexist as is shown by the
following examphfrom [1].

Let N be the manifold obtainedby revolving the graphof v(u) = 1 + efl”
aroundthe u-axis. If f satisfies a

0 u = 0, 0 = 0 (0 revolution angle)then so does
the solution f. for any subsequent time. The heat equation reduces to

e” + 1
Thus e”+u—2log(e’~+ l)=t+const, in particularu-+oo

e
2u+ 1

as t -÷oo. However,if the length off is lessthan 2ir onewould expectthesolution

to be bounded.
Fix a C1 curvef: S’ -+M. Throughoutthis sectionJ. : ~1 -+M is a solution of

the heatequationfor 0 ~ t <b ~ 00 which is continuousalongwith at t = 0

andwhichcoincideswithfat t = 0. As beforeE(t) = E(f~).

DEFINITION. Let c> 0 and U be an open set in M. U hasthe propertyP(c) if

for everyC2 curveg : S1 -+ U

ç21T

(4.1) cE(~)~<) r(g)~2dO.

0
I I I I

Put m(f, c) = (2ir) 2E(f) + (3ir2 + 2(2ir) 2)E(f)2 + 4(2ir) 2c’E(f)4.

THEOREM4A. Let M satisfy thefollowing condition: Thereis a compactK CM

such that for everyx in the complementof K there exist real numbersk,c with
c > 0 and k > m(f, c) such that Bk(x) hasthe propertyP(c). Then the imageof

f~is bounded,and further if b = and if the imageofsome lies in M \ K then

thereexistsa p EM such that urn f~ p.
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Proof For everyclosedC’ curveg : S’ -÷Monehastheinequalities

1 .L !
(4.2) diamg(S’)’~— L(g)~ir2E(g)2.

2

By the corollary to Lemma 3A E(t) is a non-increasingfunction and is therefore
bounded by E(f). Bearing that and (4.2) in mind it is seenthat if all thecurves

with t E (0,b) intersectK then the imageof thesolutionis bounded.
So supposethat the image of .~ lies in M\K for some t

0E(0,b). Fix

00 E ~ By hypothesisthereexist c > 0 and k > m(f, c) such that Bk(ft(Oo))

has the property P(c). It is easily seen that f~(S’)C Bk(1(Oo)). Put

t, = sup{t’ > t0 :f~(S’)C Bk(ft(Oo)) for all t E [t0, t’)} and suppose for a

contradictionthat t, <b. It is easyto showthat

(4.3) su~d(1 ~ (0)) ~ ir~[E(t0)
2 + E(t

1)
2 1+

1 2n
+ ~ f~Ia~f~(0)Idtd0.

Estimateof thelastterm in (4.3): By (3.2)

1— I I Ia~f~(0)Idtd~~21rJ Jo to

(4.4) ~ (2w) 2f (f i a~f~(o)2d0) dt =

= (2~)2 f (— a~E(t))2dt.

Put ~={t~t
0:—a~E(t)~l}, ~ ~=

={ t ~ t0 : — a~E(t) ~ E(t)
2}. From (4.4)

1 ç2n (~l(4.5) — ) j ja~f~(O)Idtd0~2ir 0
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~ (2~)2f (— a~E(t))2dt +

(t
0,t1l fl T1

(4.5) + (2ir) 2 j (— a~E(t))
2dt +

It~,t
1IflT2

+ (2~)2J (— ö~E(t))
2 dt.

Ito,tIlnT
3

I (2~)2 f (— a~E(tfl
2dt <

lto,tIln T,

(4.6) ~(2~)2 f (—a
1E(t))dt~

•1 ~ ~I

~ (2~)
2(E(t

0)—E(t1)).

II Suppose[t’, t”I C i.e. E(t)
2 ~ — a~E(t)~ 1 for all t E [t’, t”]. Then

a~E(t) !

l~— I =—2a~(E2)so
E(t)2

!
t” —t’ ~ ~2) a~(E2)dt= 2(E(t’)2 —E(t”)2).

Therefore,the sum of the lengthsof the intervalsmaking up It
0, t1 I fl is no

1 1

greaterthan2(E(t0)
2 —E(t

1)
2)andso

(4.7) (2~)2 f (—a~E(t))2dt~ 2(2~)2(E(t
0)

2 —E(t
1)

2).

tt
0,t,In T2

III SinceBk(f (0 )) hasthepropertyP(c) onehas

to 0

ç2,r
cE(t)~J r(J)(0)1

2d0 =j I a~f~(o)~do=—a~E(t)
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andtherefore

a~E(t)
~—c, forall tE[t ,t ).

E(t) 0

From this it follows that for t E [t
0, t,)

(4.8) E(t) ~ E(t0)e_c(t_to).

Therefore

_ir I l(

(2ir) 2 j (— a~E(t))
2dt ~ (21r)2j E(t)4dt ~

lto,t,lfl T
3 Ito,tllfl T3

tl
~ / i r_c(t_t )1

(4.9) ~ (2ir) 2 j E(t0)
4 exPL ° jdt =

4
to

= 4(2ir) 2c_1E(t)4(l — exp[ _c(ti_tO)])

Combining(4.3),(4.5), (4.6),(4.7),(4.9)

d(f~(0),4(0)) ~ ~2[E(t
0)

2 + E(t
1)

2] + (27r)2 [E(t
0) —

(4.10) —E(t1)] + 2(2~)
2[E(t

0)
2 —E(t

1)
2] +

+ 4(2w) 2c_1E(t
0)4(1 — exp [_c(t~_ to)]).

And further

sup d(f ~ (O))~(2ir)
2E(t

0)+
0ES~ 1 0

+ (2~2+ 2(2w)
2)E(t

0)
2 + 4(2~)2c’E(t

0)
4.

From this it follows that j~(S’)C Bk(J (Os)), but that would meanthat there

is an � >0 such that ~ C Bk(1 (os)) for all rE [0, e) contradictingthe

choiceoft
1.

For the proof of the last assertionof the theoremobservethat by the above

proof f~(S’)C Bk(ft(Oo)) for all t E [t0, 00) and thereforethe inequality (4.8)
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will hold for all t E [t
0, oo). Further,for all t’, t” E [t0, 00) the inequality (4.10)

will hold for t’, t” in place of t0, t1. For a fixed 0 (4.8) and(4.10) show that
f~(0) convergesto apointp as t -+00. Further,(4.8) showsthat E(t) and therefore
(by (4.2)) L(J) convergeto zero,whichshowsthaturn f(O)is independentof 0.

Remark. In the case of M = IR” it is easy to show that the inequality

E(f)~ f

2hT r(f)12d0 holdsfor every closedC2 curvef : S’ -+

First considerreal valuedf. For any f E L ‘(S’) the Fourier coefficientsoff

aredefinedby the formula

~ fir

f(n) = — I f(0) e”’6 dO n E 7L
2ir J

—IT

andonehastheParsevaltheorem

— Jf(0)~TW5~d0

wheneverf, g E L2(S’); the serieson the left convergesabsolutely.Whenf is

C2 onehas

a
0f(n) = inf(n), a~f(n) = —n

2f(n) nEZ

IT

— Ji a
0f(o) 2 dO = ~ IQ(n)12= ~n2I 7(n)12

a~f(o)2 dO = n~f(n) 12.

Therefore II a0fII~~II ~0~fll~and the same inequality holds for lR”-valued f

becauseit holdsfor eachcomponent.

5. MOREON BOUNDEDNESSCONDITIONS

In thissectiona demonstrationof theinequality
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1 ç2ir
— E(f)~ I lr(f)12d0
2ir2

0

for closed curves satisfying certain assumptionsis given following a proof
of the Synge-formulagiven on pp. 122 -3 in [2].

DEFINITION. If A is a subsetofM define

= sup{(R(X, Y)Y,X) :X, YE 7M,IXI =1 ~I= l,p EA}.

Thenforallp EA,X, YET~M~(R(X,Y)Y,X)~<gAIXl2IyI2.

THEOREM5A. Let f : S1 —*M be a non-constantclosed C2 curve and assume

w.l.o.g. that the maximumof the energydensityoccursat 0 = 0. Supposethat

the imageoff is containedin a ball Br (f(0)) satisfyingthefollowing: Theexpo-
nential map expf(

0).Tf(Ø)M —*M restricted to Br(0) in Tf(Ø)M is a diffeomor-

phism onto B~(f(0))and if KB>O the radius rsatisfiesr<(2i~~
1. Then the

inequality —~- E(f) ~f~Ir(f)12 dO holds.

Remark. Theinequality is of coursetrivial whenf is constant.

During the proof consider0 in the interval (0, O~)where0~is the first 0 > 0
suchthatf(O) = f(O). PutB = Br (f(0)). To beginwith a few definitions.

Define f* :S~-+ Tf(
0)M by f* = expZ(~of and a family of geodesicsg by

g(0, t) = exPf(Ø)(t .f*(O)). For a fixed 0 g°(.) =rg(O,.) is a geodesicfrom

f(0) tof(0) (g°(O) = f(0), g°(l)= f(0)).
Define three vector fields along the map g :X = a~g°,Y = a0g° and Y =

= Y—(Y,X)X/1X1
2.

Define L(0) to be thelengthofg°.L(O) =~ a~g°~= IxI.

StepI

0!~~~+XI X (0, t) existsandequalsthe unit vectorin thedirectionof a0f ~=

Proof Identify 7~(0)Mandall its tangentspaceswith lR” andso let J0(u) be the
vectoru translatedto (7..(0)M)0. Onehas

X
— (O~t)=exPf(O)*(Jtf*(O) If *(0)I
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f * (~)
(compareGauI3-lemmap. 136 [2]). ~ I f ~(~)I exists (in 7}(Ø)M) and equals

the unit vectorin the directionof ~0fl0= 0 andso ~ ~ (0, t) existsand is

equalto thesamevector.

Sinceg(O, 0) ~f(O), Y(0, 0) 0 andalso V~ Y(O, 0) 0
(5.1)

Sinceg(O, 1) = f(0), Y(0, 1) = a0f(O) andalso Va Y(0, 1) = r(f)(0).

The vector field ~ along g (the componentof Y orthogonal to X) is C
1 for

0 E(0, O~)and ~(O,O)~0 by(5.l).

StepII

(5.2) a
0L(e)= (a8f(0), IXXI (0,1))

Proof By(2.2)

(5.3) VaXVaY.
0 t

Using this and L (0) = IX I d t therefollows

(1 ~0(X,x) (1 (Va X,X)

a L(O)= I dt=I 0 dt=0 j 2IXI J
0 0

(‘ (Va Y,X) 1’ X
=1 C dt=I a

J IXI jt IXI0 0

= (v, ~) (0,t)I~0,= ~a0f(o), — (0,1)~
IXI ‘ XI by(5.l).

COROLLARY.

(5.4) lirn a0L(0)=Ia0f(o)I.e-+o

Thisfollows immediatelyfrom (5.2) andStepI.
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Step III

‘1
~~L(O) ((VaY~,VaY~)(R(X, Y)Y,X))dt +

(5.5)
I X

+ ~ r(f)~0),— (0,1)
IXI

Proof By(5.3)

a0(~)= a0(X, X) 2= —(X,X)
2(VaX,X)=

(5.6)

(V~Y,X).
IXI3

From above a
0L(o)= ~1 (VaY, X) dt, therefore using (5.6) and (5.3)

oneobtains

3~L(0)=f (~ (a0 (V~Y,X)) + (a0 ~ ) (V~Y,X) ) dt =

(5.7) f1( ((VaVaY,X) + (Va Y,Va X)) ~(VaY,X)2)dt =

f (~ (K Va VaY,X) + (VaY, VaY)) (VaY,X)2)dt.

Since for a fixed 0 g(O,~)is a geodesicV/aX = 0 and a~IX I = 0. Therefore

1
(5.8) Va — (Y,X)X = — (a~.(Y,X))X.

r 1X1
2 IXI2

Also, since(Y,X) = 0

(5.9) (VaY,X)t(Y,X)0
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Now

Y= Y+ — (Y,X)X
1X12

and

Va Y ~ + ~ (~ KY, X) X) =

~aY+ — (a~(Y,X))X
1X12

by (5.8). From thisit follows that

~ ~ ~>= ~ ~ + I~2(a~(Y,X))~2(Va~,X) +

+ — (a (Y,X))2(X,X).
IXI4

The second term in this expressionvanishes by (5.9), the last one equals

I~2 ~~~a,1T’X>)2. In otherwords

~~a~1T’~a,~’>= ~~a
5~’V/a,?))+ I~2

Substitutingthis in (5.7) gives

11
(5.10) ~~L(O)=f ~ ((Va0Va~Y,X)+ WaY,Var?)) dt.

By (2.3) ~a0 a,Y = ~a~~a0~ — R(X, Y) Y. Therefore ~~a9~ Y, X) =

= ~ Y,X) — KR (X, Y) Y, X) = a~(Va Y, X) — KR(X, Y)Y, X).
Substitutingthis in (5.10)gives

~~L(O) JI (a~(v80y, ~ + ~ V/a,?> +

(5.11)
+(R(X,Y)Y,X>) dt.
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From p.91 [2]KR(X, Y)Z, U> = —(R(X, Y)U,Z>and therefore KR(X, Y)Z,Z> =

= 0. OnehasalsoR(X, Y)Z= — R(Y, X)Z andthereforeR(X,X)Z= 0.

Put h(0,t)= ~2 (Y,X>. Then?= Y—h.X.

KR(Y,X)X, Y)= (R(Y,X)X, ?)—(R(h.x,x)x, ?> =

= (R(Y,X)X,Y> —KR(Y,X)X,h.X)= (R(Y,X)X,Y>.

This shows that KR(X, ?)?,x> = (R(X, Y)Y,X>. This changes (5.11) into

ci 1
a~L(o)= I — ((Va ?,Va Y)KR(X, ?)?,x))dt+

) IXI t0

11 X ~1 1

+ I a (Va y, _) dt = I — ((Va Y, Va Y> —J C XI J IXI
0 0

—(R(X,?)Y,x))dt+ (r(f)(o)~ 1~~1(0, 1))

(using (5.1)) which is (5.5).

StepIV

The integral I=f’ ~ ((Va,Y,Va,?>—KR(X,?)?,x>)dl is non-negative.

Proof 1= f
1 (K7a,?,Va,Y>(~~C~,?)?,x>)dt since IXI is independent

of t.

Obviously if KB ~ 0 the integral is non-negative.
SupposeKB> 0. As remarkedabove?(O, 0) 0. Consequently

I ?I2(O, t) = <P, ?)(o, t)—KY~,Y> (0,0) =

It It

=1 at(Y~Y)dt=j 2KV/a Y,Y)dt~<

0 0

I

~ 2f~Va7II ?Idt ~ 2(f I Va,?f2dt) (f’I ?I2dt).
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Therefore,
1 1

Or 1u ?I2dt 2(JIVa?I2dt)(JI ?I2dt).

(5.12) jI ?I2dt~4f IVat?I2dt.

Since the radiusr of B satisfiesr < (2K~) 1 one has I X I ~ (2K~)~. Therefore

KR(X,Y)Y,X>~<KBIXI2I?I2~~I ?I2.

Consequently

f(R(X~?)?,X)dt~ L’ ?I2dt~flVa?I2dt

using (5.12). This gives

f
By the corollary of Step II lirn~a

0L(o) = I a0f(0)I. From this one obtains

10

a0L(o)=I a0f(01+j ~L(O’)d0’.

0

From StepsIII andIV therefollows

10

a0L(o)~Ia0f(0)I_J Ir(f)(0’)IdO’.
0

Sincefisa closedcurve theremustcomea 01 wherea0L(01) = 0. Then
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101

I a0f(o)I~J r(fl(0’)IdO’~
0

r(f)(0)~ dO ~ (2~)2(f I r(f)(0)j2d0)

andtherefore

I aof(o)I2~2~(fIr(f)(o)I2do~

By assumptionthe energydensityattainsits maximumat 0 = 0 so

t2n

E(f)~7rIaof(OI2~27r2j Ir(f)(0)I
2d0.

0

To concludethis section two examplesof how one can combinethe results

of this and the precedingsection.

Define i :M —* lR~by

i(p).= sup{r : eXP~: T~M-÷Mrestricted to Br(0) C T~Mis a

diffeomorphismontoBr (p)}.

Case 1

Thereexistsa compactK CM suchthatKM \K ~ 0 andi IM \ K ~ 2r
0> 0.Then

any solution of the heatequationwith initial curve f suchthat m f, ~
2ir

has bounded image.

Proof For anyp such that B3~(p)lies wholly in M \ K, B,(p) has the property

P —~-~ . For let g be a closedC
2 curve with imagein Br (p), w.l.o.g. assumethat

2ir 0

the maximumof e(g) is attainedat 0 = 0. B
2 (g(0)) is containedin M \K andr0

so satisfiesthehypothesesof Theorem5A. ThereforeTheorem4A appliesand the
result follows.

Similarly:
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Case2

There exists a compact K CM such that ~M\K> 0 and ~IM \K ~ 2r0 ~

~ (2i~\K) Then any solution of the heat equationwith initial curve f such

that m (f~__~)<r0 hasboundedimage.

6. EXISTENCEOFSOLUTIONSOF THE HEAT EQUATION

This sectionwill be devotedto thefollowing existenceproblem.Given a closed

C’ curve on M does thereexist a solution f. of the heatequationdefinedfor

t E [0, t1), t, ~ oo, suchthat and a0f~are continuousat t = 0 and coincides
with the given curveat t = 0?

Thisproblemwill be treatedunderthe assumptionthat the manifoldM satisfies

a condition (for exampleone from the previoussections)which will ensurethat
any solution of the kind soughtwill have its imagecontainedin a fixed compact
set. A solution of the heat equationwill henceforthmeana solution of this
problem for a fixed but arbitraryf0.

The main ideas of this treatmentare thoseof [1]; thereforeonly an outline

will begiven with whatis differentherepointedout.

I. In [11 it is shownhow to replacethe harmonicmapequationr(f) = 0 and

the heat equationa~f~= r(f,) (which in terms of local coordinateson M are

local systemsof equations)with global systems.This is done as follows: M can
be smoothly and properly embeddedin some EuclideanspacelR~by a map
w : M -+ 1Rc7. Given such an embeddingit is alwayspossibleto constructa smooth
Riemannianmetric on a tubularneighbourhoodN of M so thatN is Riemannian
fibred. Let ir : N-÷M be the projection map and its covariant differential.

Then

(a) A map f:5
1 -+M satisfies r(f) = 0 if and only if the composition

W = w of satisfies

(6.1) aow=~abaowaow.

(b) A deformation J :S1 -+M (t
0< t < t1) satisfiesr(J) = a~f,if and only if

W, = w o satisfies

(6.2)

Also, given a smooth W~: S
1 -+N satisfying(6.2) for t

0~t < t1, if W maps

S’intoMthensodoeseveryW,fort0~t<t1.
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II. Derivativebounds

LEMMA. Any solution .t :51 -+M ofthe heatequationhasenergydensitysatisfy-

ing

(6.3) a~e(f,) — a~e(f~)= I r(f) 2.

Proof

a~e(ft)=a~(_(aoft~a0~>)=

= ao(va a0f~,a0j> = ~ ~a0~ ~0f,>+

+ (Va ~ ~a0a0j.>.

Theheatequation canbe written a~f~= ~aa0 .t so

a~e(f~)= KVa,aoft, a0f~>= ~~a0~ ~0f1>=

= ~ ~a0a0j,a6j>

Therefore

a~e(f~)— a,e(f~)= (Va ~0f,,~a0a0f~>=1 r(J)~.

Put H(O,, 02, t) = (~t)
2 exp [ (01402)2] for 01, 02 E ~, t E

H is a fundamentalsolution for theoperatorL
0 = — a~,satisfiesL0 H = L0H =

= 0, and the identity

u(01, t) = _f dr H(0,, 02,t —r)L0 u(02, r)d02

(6.4)

+fHOiio2~t_to)u(02~to)d0210<t<t1

JR

holds for all Ut definedon ~1 which are of classC
2 in 0 andC1 in t for t

0 ~ t ~ t1.
Suppose~ is a solution of the heatequationdefinedfor 0~t<t,. Since

H> 0 therefollows from (6.3) and(6.4)
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(6.5) e(f~)(O1)~<fH(Oi~ 02, t — to)e(f~)(O2)d02 for 0< t0< t <t1.

For t > 1,putting t — 1 for t0 in (6.5) there follows

e(f,)(01) ~ f H(O,, 02, l)e(~_,)(02)d02
1IR

and therefore

120
e(f~)<constJ e(f,,)(0)dO.

Jo

Any smaller value can be put in for t — 1 on the right for examplezero since

e(f~)is assumedto be continuousat t = 0.
For 0 < t ~ 1 putt

0 = 0 in (6.5) to obtain

(6.6) e(f,)(O1)~f H(O,, O2~t)e(f0)(02)d02.

~IR

Put~If~) = sup e(f0)(0) then (6.6) showsthat
0 ES

1

e(f~)(O)< const.ë(f
0).

To summarize:

THEOREM 6A. Let f~be a solution of the heat equationfor 0 ‘~ t <t,. Then

e(J)~const./ e(f0)(O)dO for 1 ~ t
.10

e(f~)~const.sup e(f0)(0) for 0~t~1
0 ES’

with the constants not depending on

The differencebetween this and the derivation of boundsfor the first order

spacederivatives in [1] is that the curvatureterms in the identity (6) §8A in

[1] do not appearin the correspondingidentity here (i.e. (6.3)), because the
domain is 1 -dimensional.It is thereforenot necessaryto imposecurvaturerestric-
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tions on the target manifoldM.

For a solution of the heatequationthereis the following theorem,proved
in [1], for the secondderivativewith respectto 0 of the W~in (6.2).

THEOREM 6B. Given � thereis a constantCindependentoft suchthat I a~w,dI<
<C for t> �. The constant C depends on f0.

Thisis provedby usingthe formula

Wf(O)=_f drf H(O,Ol,t_r)Fc(0l,r)dOP+W~(O,t)

-‘0 1R

where

W~(O,t) = f H(O, 0’, t) Wc(O’, 0) dO’

IR

and the FC the functionson the right of (6.2) and the propertiesof the funda-
mental solutionH. The only remarkthat shouldbemadeis thathereit is assumed
that the manifold satisfies conditionswhich will ensure that the image of any

solution will be containedin a fixed compactset and thereforethe embedding
conditions in [1] are not necessary since the inequalities (12), §8D in [1] are

automaticallysatisfiedon a compactset.

III. Thefollowing two theoremsareprovedin § 10 [1].

THEOREM6C. ‘~f~andf,’ are two solutions of the heat equation with f0 = ti,’ then

they coincide for all relevant t> 0.

ThEOREM6D. Let M’ be a compact subset of M. Then for any closed C’ curve
f0 : ~1 -*M such that f0(5

1) lies in M’ there is a positive constantt
1 depending

only on M’ and the magnitude of the energy density e(f0) such that thereexists
a solution j~ for that f0for 0 ~ t < t1.

From these two theoremsone deducesthe following which correspondsto

theorem10Cm [1].

THEOREM 6E. There is a unique solution f~.of the heatequationdefinedfor all
t ~, 0.
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Proof Such a solution exists for small t by Theorem 6D and is unique by
Theorem 6C. Let t~be thelargestnumbersuchthat a solution of the kind sought
existsfor 0 < t < t

1 and supposethat t1 is finite. By assumptionthemanifoldM
satisfies conditionswhich ensurethat the images f, (5’) (0< t < t~)all lie in a

compactsubsetof M. Theorem6A showsthat the energydensity remainsbound-
ed and thereforeby Theorems6C and 6D thereis a fixed positivenumber� such

that any J canbe continuedas a solution into the interval(t, t + �). This contra-
dicts thefinitenessof t1.

7. SUBCONVERGENCEOF SOLUTIONS

In this section let f0 be a fixed closed C’ curve 51 —*M and assumethatM
satisfiesconditionswhich will ensure that any solution of the heatequationf,
which is continuousalong with a0f~at t = 0 and which coincideswith the given
f0 at t = 0 will l’ave its image containedin a fixed compactset. Then by the

precedingsection a unique solution exists for all t E [0, 00). In this section
a proof of the following:

THEOREM 7A. There is a sequencet1, t2, t3, . . . with tk —*00 such that the

curvesfk = f~ convergeuniformly to a closedgeodesicf

LEMMA. (See [3]). For k(f~)= ~ ~,f,> one has the following identity

(7.1) a~k(J.)= a~k(f,)—I~aa,fI
2+(R(a

0f~,a~f~)a0f,,a~f~).

Proof

Ka,f~,a~~>]= a0 (Va atf~,a,~>=

= (Va ~a0a~j,a~j)+ ~~a0~ Va a~f~>=

= (Va0Va~aoft~a,j> + I ~a0a~J12.

Also,

(a~f~,a~~>]= ~ ~ a,~>=

= ~ ~aa0j,a~f>.t 0

Combiningtheseit is easily seenthat
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~7a~~a
0a0f~,a~f~)= a~[~(a~f~,

H Va0a~f~2 + (Va ~a a0f~— Va0Va~aoft,a~f~)
which is (7.1).

LEMMA.

a~E(t)—*0 as t .—* oo (As beforeE(t) = E(f~)).

Proof Put K(f~)= .~20k(f~)(O)dO with k(f~)as in precedinglemma. a~E(t)=

= — 2K(f~)(Corollary of Lemma3A) and

a~E(t)=_2) a~k(f~)(o)do.
0

The last term in (7.1) is uniformly boundedfor t greater than any given positive

numberby Theorems6A and6B. By integrating(7.1) overS’ it thereforefollows

that thereexistsa constantC suchthat a~E(t)~ C. a~E(t)cannotbe bounded
awayfrom zerobecauseit isintegrablesoif C~’0 then obviously a~E(t)-÷0. Sup-

poseC< 0. If for some e >0 thereexist arbitrarily large t0 such that a~E(t0)=

= — � then

(to (to

j atE(t)dt<I (—e—C(t0--t))=e
2/2C

butthis contradictstheintegrabilityof a~E(t).

Remark. This lemma will be used in the proofof Theorem7A. In [lithe cor-
respondingresult (Corollary § 6(C)) is provedwith the assumptionthat the target
manifold has non-positive sectionalcurvature.This assumptionis not necessary

here.
In the following proof it will be convenientto usethe function G definedby

I 2o
G(O, 0’) =} X(~,

2ir)(r)X(O,r)(0’) dr

0

where X(0,b) is the characteristicfunction of the interval (a,b). The formula
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p 2ir

h(o)=h(o)_a0h(o)(21r_o)_J G(o,O’)a~h(o’)dO’
0

holdsfor all C
2 functionsh : —* IR and

r 2o

(7.2) a~ G(O,O’)h(O’)dO’=—h(O)

Jo

holdsfor all continuousfunctionsh :S1 JR.

Proofof Theorem7A. Let W~.= w of bethe solutionof(6.2) which corresponds

to The mappingsW~.and a
0 W~.form boundedequicontinuousfamilies (Theo-

rems 6A and 6B). Therefore thereexists a sequencet1, t2, t3, . . . with tk —*00

such that the Irappings Wk = W,. convergeuniformly along with a0 Wk to a

continuouslydifferentiablemappingW. The Wkcanbe representedby the formula

(211

W,~(O)=W~(0)—a0w~(o)(2ir—o)—J G(o,o’)a~w,,~(O’)do’
0

or

W,~(O)= W~’(0)— a0W~~(0)(2ir—0)—
(7.3)

ç 2n

G(0, 0’)(F~(O’)+ a~w,~(O’))do’
Jo

where F~= 7r,~5, a0 Ill; a0 W,~’.By the precedinglemma the a~W~(0) convergein

themeanto zero as k—* oo. Therefore, since Gis bounded

lim I G(o,o’)a Wc(0~)d0l=0.
k_~~~) tic

0

Passingto the limit in (7.3) thereresults for the mappingW

W~(O)= WC(0)— a0 Wc(0)(21r— o)_j G(0, O’)Fc(O’) do’

0

where Fc(0’) = ,~im F~(O’)= irad,, (W) a0 w” a0 W”. Referring to (7.2) it is seen
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that W satisfies(6.1) which meansthat it correspondsto a closedgeodesic.
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